Control of the surface hydrophilicities and enzymatic hydrolyzability of hydrophobic aliphatic polyesters such as poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) [i.e. poly(L ‐lactic acid) (PLLA)] was attempted by coating with hydrophilic poly(vinyl alcohol) (PVA). The PVA coating was carried out by immersion of the PCL and PLLA films in PVA solutions. The effects of PVA coating on the hydrophilicities were monitored by dynamic contact angle measurements, while the enzymatic hydrolyzability of the PVA‐coated PCL and PLLA films was evaluated by the weight losses after Rhizopus arrhizus lipase‐ and proteinase K‐catalyzed hydrolysis, respectively. It was found that the PVA coating successfully enhanced the hydrophilicities of the aliphatic polyester films and significantly suppressed enzymatic hydrolyzability of the aliphatic polyester films, excluding the PCL film coated at a very low concentration such as 0.01 g · dL?1 and the crystallized PLLA film coated at 1 g · dL?1, for which slight enhancement and no significant enhancement, respectively, were observed in the enzymatic hydrolyzability. Moreover, the hydrophilicities and enzymatic hydrolyzability of the aliphatic polyester films were controllable to some extent by varying the PVA solution concentration and the film crystallinity.