首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Approximate decidability in euclidean spaces
Authors:Armin Hemmerling
Abstract:We study concepts of decidability (recursivity) for subsets of Euclidean spaces ?k within the framework of approximate computability (type two theory of effectivity). A new notion of approximate decidability is proposed and discussed in some detail. It is an effective variant of F. Hausdorff's concept of resolvable sets, and it modifies and generalizes notions of recursivity known from computable analysis, formerly used for open or closed sets only, to more general types of sets. Approximate decidability of sets can equivalently be expressed by computability of the characteristic functions by means of appropriately working oracle Turing machines. The notion fulfills some natural requirements and is hereditary under canonical embeddings of sets into spaces of higher dimensions. However, it is not closed under binary union or intersection of sets. We also show how the framework of resolvability and approximate decidability can be applied to investigate concepts of reducibility for subsets of Euclidean spaces.
Keywords:Computable analysis  approximate decidability  recursivity in analysis  approximate computability  resolvable set  topological arithmetical hierarchy  degree of reducibility
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号