首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of enzymopathies in the human red blood cells by constraint-based stoichiometric modeling approaches
Authors:Durmuş Tekir Saliha  Cakir Tunahan  Ulgen Kutlu O
Affiliation:Department of Chemical Engineering, Bo?azi?i University, 34342 Bebek-Istanbul, Turkey.
Abstract:The human red blood cell (RBC) metabolism is investigated by calculating steady state fluxes using constraint-based stoichiometric modeling approaches. For the normal RBC metabolism, flux balance analysis (FBA) is performed via optimization of various alternative objective functions, and the maximization of production of ATP and NADPH is found to be the primary objective of the RBC metabolism. FBA and two novel approaches, minimization of metabolic adjustment (MOMA) and regulatory on-off minimization (ROOM), which can describe the behavior of the metabolic networks in case of enzymopathies, are applied to observe the relative changes in the flux distribution of the deficient network. The deficiencies in several enzymes in RBC metabolism are investigated and the flux distributions are compared with the non-deficient FBA distribution to elucidate the metabolic changes in response to enzymopathies. It is found that the metabolism is mostly affected by the glucose-6-phosphate dehydrogenase (G6PDH) and phosphoglycerate kinase (PGK) enzymopathies, whereas the effects of the deficiency in DPGM on the metabolism are negligible. These stoichiometric modeling results are found to be in accordance with the experimental findings in the literature related to metabolic behavior of the human red blood cells, showing that human RBC metabolism can be modeled stoichiometrically.
Keywords:Red blood cell   Enzymopathy   Flux balance analysis   Minimization of metabolic adjustment   Regulatory on–  off minimization
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号