首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Studies on Ziegler-Natta catalysts. Part V. Stereospecificity of the active center
Authors:L A M Rodriguez  H M van Looy
Abstract:Experimental results on Ziegler-Natta catalysts, based on observations made with the electron microscope, and a qualitative comparison of the stereospecificity of various catalyst combinations are given. The polymerization of olefin in these experiments is performed in the gas phase on dry catalysts in the absence of solvent or excess aluminium alkyl. The crystallographic structure of the lateral faces of α-TiCl3 is established by electron microscopy and electron diffraction. The electron micrographs of α-TiCl3–AlMe3 catalysts show that the active centers, which are revealed by the dotwise formation of polymer, are located along the growth spirals, on lateral faces, and on surface defects. These regions of the surface are the only regions in which the surface titanium atoms are incompletely coordinated. The presence of chlorine vacancies and exposed titanium atoms is therefore an essential condition for the formation of active centers. However, the number of active centers is small in comparison to the number of incompletely coordinated titanium atoms, and hence it is concluded that the normally occurring α-TiCl3 sites with one vacancy do not yield active centers on reaction with aluminum alkyl. It is proposed that the reaction with aluminum alkyl on such sites leads ultimately to a bimetallic complex which fills the original vacancy on the titanium atom. That the complexation is reversible and that the deblocked alkylated site, which is of the type proposed by Cossee, is an active center is not excluded. Such a center would, however, give atactic polymer. Similar complex formation on a TiCl3 site having originally two vacancies would leave one vacancy on the titanium atom. This is believed to be the center of stereospecific polymerization. A model of this active center and a mechanism of polymer growth on it are proposed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号