首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Viscoelasticity and morphology of an organic hybrid of chlorinated polyethylene and N,N′-dicyclohexyl-2-benzothiazolyl sulfenamide
Abstract:The viscoelasticity and morphology of an organic hybrid of chlorinated polyethylene (CPE) and N,N′-dicyclohexyl-2-benzothiazolyl sulfenamide (DBS) were studied by means of tensile and shear complex modulus and differential scanning calorimetry (DSC) analysis. Tensile and shear loss modulus (E″ and G″), which are shown as indexes of vibration damping performance, showed one peak corresponding to the glass transition. The peak maximum values (Emax and Gmax)increased in proportion to DBS content ( DBS) and the slope of Emax against DBS became steep above a certain DBS content, i.e. the critical DBS content ( c). A high damping material was obtained by the addition of DBS, especially when DBS content was higher than c. These increases in loss moduli below and above c are caused by the interaction between CPE and DBS molecules and the friction between DBS molecules, respectively. It was found that CPE/DBS is a compatible blend at all DBS contents from the analysis of the glass transition temperature with DSC. Furthermore, the influence of chlorine content in CPE on those characteristics was investigated. Higher chlorine content led to lower c, a decrease in E″ below c and an increase in E″ above c. These results are due to the increase in the number of dichloromethylene units (CCl2), which reduces the α-hydrogen atom in CPE.
Keywords:CHLORINATED POLYETHYLENE (CPE)  N  N'-DICYCLOHEXYL-2-BENZOTHIAZOLYL SULFENAMIDE (DBS)  ORGANIC HYBRID  VISCOELASTICITY  MORPHOLOGY  COMPATIBILITY  VIBRATION DAMPING  GLASS TRANSITION
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号