首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nanofibers resulting from cooperative electrostatic and hydrophobic interactions between peptides and polyelectrolytes of opposite charge
Authors:Ferstl Matthias  Strasser Andrea  Wittmann Hans-Joachim  Drechsler Markus  Rischer Matthias  Engel Jürgen  Goepferich Achim
Institution:Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany.
Abstract:We investigated whether cationic peptides that contain hydrophobic side chains were able to stabilize themselves via hydrophobic interactions between neighboring peptide molecules upon electrostatic binding to oppositely charged polyelectrolytes. The interaction mechanism was examined through a model system consisting of the anionic polyelectrolyte alginate and the cationic decapeptide ozarelix. The interaction resulted in the formation of highly ordered complexes that were noticeable upon visual inspection. These complexes were then investigated by microscopic techniques and shown to exhibit a branched network structure. Cryogenic-temperature transmission electron microscopy (cryo-TEM) and negative staining TEM revealed that the molecular interactions between alginate and ozarelix led to the formation of nanofibers. The rodlike nanofibers had a diameter distribution of 4-8 nm. Isothermal titration calorimetry was used to determine the thermodynamic parameters of the alginate-ozarelix interaction. The binding constant was found to be on the order of 10(6) M(-1), indicating a high binding affinity. The interaction of the peptide with the polyelectrolyte triggered profound changes in the conformation of ozarelix, which was confirmed by UV spectroscopy and circular dichroism. On the basis of these experimental results, a theoretical modeling study of the alginate-ozarelix interaction was conducted to gain a better molecular-level understanding of the complex structure. It revealed that, upon binding of ozarelix to alginate, new intermolecular and intramolecular aromatic interactions between the ozarelix molecules occurred. These interactions changed the conformation of the peptide, a modification in which the aromatic side chains played a major role. Our results indicate that the cationic peptides interact with the polyanions via electrostatic interactions, but are additionally stabilized via hydrophobic interactions. This binding mode may serve as a powerful tool to extend the duration of drug release in hydrogel drug delivery systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号