首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transverse susceptibilities of ferromagnetic spin wave interacting with phonon reservoir, II: Temperature dependence of line shapes
Authors:Mizuhiko Saeki
Institution:
  • Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
  • Saeki Laboratory, Shimoasoushin-machi 859-40, Takaoka-shi, Toyama 939-1271, Japan
  • Abstract:A form of the transverse magnetic susceptibility of a ferromagnetic spin system with a uniaxial anisotropy energy and an anisotropic exchange interaction, interacting with a phonon reservoir, is derived in the spin-wave approximation using the TCLE method, where the phonon reservoir interacts with not only the x and y components of each spin but also its z component. The transverse magnetic susceptibility is numerically and analytically studied for the system of one-dimensional infinite spins in the lowest spin-wave approximation, by assuming a damped oscillator model of the phonon reservoir. The temperature dependence and wave number dependence of the susceptibility are numerically investigated for the half-widths and peak-heights of the line shapes in the resonance region. It is shown that as the temperature increases, the half-widths of the line shapes increase and the peak heights decrease in the resonance region, and that as the wave number increases, the half-widths of the line shapes decrease and the peak heights increase in the resonance region. It is also shown that as the uniaxial anisotropy energy of the z direction increases or as the exchange interaction between the z components of spins increases, the half-widths of the line shapes decrease and the peak heights increase in the resonance region. It is besides shown that as the characteristic frequency of the phonon increases, the line shapes show ‘motional broadening’ at the low temperature and show ‘motional narrowing’ at the high temperature. Furthermore, the resonance frequency is shown to increase as the wave number increases or as the temperature increases. The numerical results are examined analytically.
    Keywords:Magnetic resonance  Spin wave  Transverse magnetic susceptibility  Ferromagnetism  Non-equilibrium thermo-field dynamics  Linear response  TCLE method
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号