首页 | 本学科首页   官方微博 | 高级检索  
     


Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry
Authors:Soumabha Bag  P.I. Hendricks  J.C. Reynolds  R.G. Cooks
Affiliation:1. Aston Labs, Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA;2. Centre for Analytical Science, Loughborough University, Loughborough, Leicestershire, UK
Abstract:Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 μg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer.
Keywords:Ambient mass spectrometry   Reactive ionization   Chemical derivatization   Mannich reaction   In-situ analysis   Trace analysis   Amines
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号