首页 | 本学科首页   官方微博 | 高级检索  
     


A multiscale noise tuning stochastic resonance for fault diagnosis in rolling element bearings
Authors:Gang Zhang  Tian Yi  Tianqi Zhang  Li Cao
Affiliation:State Key Laboratory of signal and information processing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract:Condition monitoring of rotating machinery is important to extend the mechanical system's reliability and operational life. However, in many cases, useful information is often overwhelmed by strong background noise and the defect frequency is difficult to be extracted. Stochastic resonance (SR) is used as a noise-assisted tool to amplify weak signals in nonlinear systems, which can detect weak signals of interest submerged in the noise. The multiscale noise tuning SR (MSTSR), which is originally based on discrete wavelet transform (DWT), has been applied to identify the fault characteristics and has also increased the signal-to-noise ratio (SNR) improvement of SR. Therefore, a novel tri-stable SR method with multiscale noise tuning (MST) is proposed to extract fault signatures for fault diagnosis of rotating machinery. The wavelet packets transform (WPT) based MST can obtain better denoising effect and higher SNR of resonance output compared with the traditional SR method. Thus the proposed method is well-suited for enhancement of rotating machine fault identification, whose effectiveness has been verified by means of practical vibration signals carrying fault information from bearings. Finally, it can be concluded that the proposed method has practical value in engineering.
Keywords:Tri-stable stochastic resonance  Multiscale noise tuning  Signal-to-noise ratio  Wavelet packets transform  Machine fault identification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号