首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetic and thermodynamic assessments of the mediator-template assembly of nanoparticles
Authors:Lim I-Im Stephanie  Maye Mathew M  Luo Jin  Zhong Chuan-Jian
Institution:Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, USA.
Abstract:The understanding of kinetic and thermodynamic factors governing the assembly of nanoparticles is important for the design and control of functional nanostructures. This paper describes a study of the kinetic and thermodynamic factors governing the mediator-template assembly of gold nanoparticles into spherical assemblies in solutions. The study is based on spectrophotometric measurements of the surface plasmon (SP) resonance optical property. Gold nanoparticle cores ( approximately 5 nm) encapsulated with tetraoctylammonium bromide shells were studied as a model system. The mediator-template assembly involves a thioether-based multidentate ligand (e.g., MeSi(CH2SMe)3) which functions as a mediator, whereas the tetraoctylammonium bromide capping molecules function as template agents. On the basis of the temperature dependence of the SP optical property in the mediator-template assembly process, the kinetic and thermodynamic parameters such as the reaction rate constant and reaction enthalpy have been determined. The results led to two important findings. First, the mediator-template assembly of nanoparticles is an enthalpy-driven process. Second, the enthalpy change (-1.3 kcal/mol) is close to the magnitude of the van der Waals interaction energy for alkyl chains and the condensation energy of hydrocarbons. Implications of the findings to the understanding of the interparticle interactions have also been discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号