首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel
Authors:Spence Dana M  Torrence Nicholas J  Kovarik Michelle L  Martin R Scott
Institution:Department of Chemistry, Wayne State University, Detroit, MI, USA. dspence@chem.wayne.edu
Abstract:A simple method for immobilizing a confluent layer of bovine pulmonary artery endothelial cells (bPAECs) in microchip-based channels is described. The microchips are prepared from poly(dimethylsiloxane) and have channel dimensions that approximate resistance vessels in vivo. The reversibly sealed channels were coated with fibronectin (100 microg ml(-1)) by aspiration. The bPAECs, which were introduced in the same manner, became attached to the fibronectin coating in about 2 h. The microchip could then be resealed over a micromolded carbon ink electrode (24 microm width x 6 microm height). Coating the carbon microelectrode with a 0.05% Nafion solution selectively blocked nitrite (10 microM) from being transported to the electrode surface while nitric oxide (NO, 10 microM) was amperometrically measured. Upon stimulation with adenosine triphosphate (ATP, 100 microM) the immobilized bPAECs produced and released micromolar amounts of NO. This NO production was effectively inhibited when the immobilized cells were incubated with L-nitro-arginine methyl ester (L-NAME), a competitive inhibitor for nitric oxide synthase. Moreover, once the immobilized bPAECs were no longer able to produce NO, incubation with L-arginine allowed for further ATP-stimulated NO production.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号