首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Approximate results for rainbow labelings
Authors:Anna Lladó  Mirka Miller
Institution:1.Department of Mathematics,Univ. Politècnica de Catalunya,Barcelona,Spain;2.School of Mathematical and Physical Sciences,University of Newcastle,Newcastle,Australia;3.Department of Mathematics,University of West Bohemia,Pilsen,Czech Republic
Abstract:
A simple graph \(G=(V,\,E)\) is said to be antimagic if there exists a bijection \(f{\text {:}}\,E\rightarrow 1,\,|E|]\) such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection \(f{\text {:}}\,V\rightarrow 1,\, |V|],\) such that \(\forall x,\,y\in V,\)
$$\begin{aligned} \sum _{x_i\in N(x)}f\left( x_i\right) \ne \sum _{x_j\in N(y)}f\left( x_j\right) . \end{aligned}$$
Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval \(1,\,2n+m-4]\) and, for trees with k inner vertices, in the interval \(1,\,m+k].\) In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree \(\Delta \) in the interval \(1,\,n+t(n-t)],\) where \( t=\min \{\Delta ,\,\lfloor n/2\rfloor \},\) and, for trees with k leaves, in the interval \(1,\, 3n-4k].\) In particular, all trees with \(n=2k\) vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号