首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Vector Model of Adiabatic Decoupling
Authors:Thomas E Skinner  MRobin Bendall
Institution:aPhysics Department, Wright State University, Dayton, Ohio, 45435;bRussell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Parkville, 3052, Victoria, Australia
Abstract:A vector model of adiabatic decoupling is enunciated for an IS-coupled system of two spin-View the MathML source heteronuclei in the high-power limit of ideal adiabatic pulses. The observed S-spin magnetization evolves according to a time-dependent coupling that scales as thezcomponent of an I-spin vector which evolves due to the applied decoupling irradiation. Simple analytical expressions are derived both on and off resonance for the reduced coupling during an ideal sech/tanh inversion pulse and for the resulting signal when either in-phase or antiphase magnetization is present at the start of decoupling. The resulting model allows one to readily envision decoupling experiments, make accurate estimates of sideband intensity, and assess the relative performance of different decoupling schemes. The utility of the model is further demonstrated by applying it to several recently proposed methods for reducing sidebands. In the limit of ideal adiabatic pulses, the predictions of the vector model are almost identical to those of quantum mechanics. At the lower RF power levels used in practical adiabatic decoupling applications, where the pulses are no longer perfectly adiabatic, phase cycles are employed to achieve performance that approximates the ideal limits derived here, so the vector model is more generally applicable, as well. These limits establish standards for future determination of the most efficient parameters for practical applications of broadband adiabatic decoupling in a single transient.
Keywords:adiabatic decoupling  broadband decoupling  sidebands  vector precession
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号