首页 | 本学科首页   官方微博 | 高级检索  
     


Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation
Authors:Menke E J  Brown M A  Li Q  Hemminger J C  Penner R M
Affiliation:Institute for Surface and Interface Science and Department of Chemistry, University of California, Irvine, California 92679-2025, USA.
Abstract:Nanowires composed of the thermoelectric material Bi2Te3 were synthesized on highly oriented pyrolytic graphite (HOPG) electrodes using the electrochemical step edge decoration (ESED) method. Nanowire synthesis was initiated by applying a voltage pulse of -0.75 V versus SCE for 5 ms to an HOPG electrode in an aqueous solution containing both Bi3+ and TeO22-, thereby producing nuclei at the step edges. Bi2Te3 was electrodeposited onto these nuclei using a cyclic electrodeposition-stripping scheme that involved the electrodeposition of bismuth-rich Bi2Te3 on a negative-going voltammetric scan (to -0.05 V) and the subsequent anodic stripping of excess bismuth from these nanowires during a positive-going scan (to +0.35 V). When this cycle was repeated 10-50 times, Bi2Te3 nanowires in the 100-300-nm-diameter range were obtained. These nanowires were narrowly dispersed in diameter (RSDdia = 10-20%), were more than 100 microm in length, and were organized into parallel arrays containing hundreds of wires. Smaller nanowires, with diameters down to 30 nm, were obtained by electrooxidizing 150-nm-diameter Bi2Te3 nanowires at +0.37 V under conditions of kinetic control. This oxidation process unexpectedly improved the uniformity of Bi2Te3 nanowires, and X-ray photoelectron spectroscopy (XPS) shows that these nanowires retain a Bi2Te3 core but also have a thin surface layer composed of Bi and Te oxides. The ability of Bi2Te3 nanowires to generate electrical power was assessed by transferring ensembles of these nanowires onto cyanoacrylate-coated glass surfaces and evaporating 4-point nickel contacts. A dimensionless figure of merit, ZT, ranging from 0 to 0.85 was measured for fresh samples that were less than 1 day old. XPS reveals that Bi2Te3 nanowires are oxidized within a week to Bi2O3 and TeO2. These oxides may interfere with the application by evaporation of electrical contacts to these nanowires.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号