Abstract: | Millar-type interpenetrating polymer networks (IPNs) are composed of two identical networks. In the present case Millar IPNs of polystyrene/polystyrene were prepared where the crosslinker levels of the two networks differed by a factor of 10. Polymer network I contained 0.4% divinylbenzene (DVB) and polymer network II contained 4% DVB, the polymers having the following weight proportions: 75/25, 50/50, and 25/75. A single polystyrene network containing 2.2% DVB was synthesized for comparison with the 50/50 Millar IPN, both containing the same average amount of crosslinker. The creep behavior of the Millar IPNs was found to be dominated by polymer network I, as were the rubbery moduli and swelling behavior in toluene. These results suggested that polymer I domains are more continuous in space and polymer II domains are less continuous. The Donatelli equation predicted polymer II domain sizes of 60 Å to 100 Å for the Millar IPNs. Electron micrographs of specimens containing 1% isoprene in polymer II offered visual evidence for the segregation of polymer II domains from polymer I, and showed that the polymer II domains were, in fact, less continuous. Polymer II domains varied from about 50 to 100 Å in size, as predicted. These results have implications for gelation processes in general. |