首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A probabilistic study of the influence of parameter uncertainty on solutions of the radiative transfer equation
Authors:MMR Williams  Matthew Eaton
Institution:Applied Modelling and Computational Group, Department of Earth Science and Engineering, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP, UK
Abstract:The influence of uncertainty in the absorption and scattering coefficients on the solution and associated parameters of the radiative transfer equation is studied using polynomial chaos theory. The uncertainty is defined by means of uniform and log-uniform probability distributions. By expanding the radiation intensity in a series of polynomial chaos functions we may reduce the stochastic transfer equation to a set of coupled deterministic equations, analogous to those that arise in multigroup neutron transport theory, with the effective multigroup transfer scattering coefficients containing information about the uncertainty. This procedure enables existing transport theory computer codes to be used, with little modification, to solve the problem. Applications are made to a transmission problem and a constant source problem in a slab. In addition, we also study the rod model for which exact analytical solutions are readily available. In all cases, numerical results in the form of mean, variance and sensitivity are given that illustrate how absorption and scattering coefficient uncertainty influences the solution of the radiative transfer equation.
Keywords:Polynomial chaos  Probability  Transport theory
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号