首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrodynamic interactions in Brownian dynamics: I. Periodic boundary conditions for computer simulations
Institution:1. Department of Physics, University of California Merced, Merced, CA, USA;2. Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel;1. Department of Mathematics, Wayne State University, United States;2. Department of Mathematics and Statistics, Concordia University, Canada
Abstract:Because of the long range nature of hydrodynamic interactions, the problem of boundary conditions on a finite simulation cell of a hydrodynamically dense suspension of particles in Brownian motion is quite as complicated as the analogous problem in simulation of the statistical mechanics of charged and dipolar systems. One resolution of this problem is to use periodic boundary conditions and to view them as a way of describing a physical system composed of a large spherical array of periodic replicas of the simulation cell. The hydrodynamic interactions are calculated using the quasi-static linearized Navier-Stokes equation. This requires that the suspending fluid velocity remains small throughout the array. That the sum of the particle velocities in the simulation cell be zero is insufficient to force boundedness of the fluid velocity as the array becomes large. Boundedness in the array of the suspending fluid velocity is achieved if a rigid wall boundary condition is applied at the outer edge of the array as the array becomes large. With this condition the net particle velocity equals zero condition is not needed. The condition allows lattice sum representations for the suspending fluid velocity to be derived. These lattice sums are absolutely and rapidly convergent and periodic. Representations of the velocity in the array with boundary condition allow calculation of mobility tensors which are also periodic and can be evaluated numerically in tolerable amounts of computer time. A major effect of these calculations is to identify the physical model system corresponding to a truly periodic fluid velocity and mobility tensor as a large array with rigid wall boundary condition.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号