首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Light-harvesting supramolecular porphyrin macrocycle accommodating a fullerene-tripodal ligand
Authors:Kuramochi Yusuke  Satake Akiharu  Itou Mitsunari  Ogawa Kazuya  Araki Yasuyuki  Ito Osamu  Kobuke Yoshiaki
Institution:Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0101, Japan.
Abstract:Trisporphyrinatozinc(II) (1-Zn) with imidazolyl groups at both ends of the porphyrin self-assembles exclusively into a light-harvesting cyclic trimer (N-(1-Zn)(3)) through complementary coordination of imidazolyl to zinc(II). Because only the two terminal porphyrins in 1-Zn are employed in ring formation, macrocycle N-(1-Zn)(3) leaves three uncoordinated porphyrinatozinc(II) groups as a scaffold that can accommodate ligands into the central pore. A pyridyl tripodal ligand with an appended fullerene connected through an amide linkage (C(60)-Tripod) was synthesized by coupling tripodal ligand 3 with pyrrolidine-modified fullerene, and this ligand was incorporated into N-(1-Zn)(3). The binding constant for C(60)-Tripod in benzonitrile reached the order of 10(8) M(-1). This value is ten times larger than those of pyridyl tetrapodal ligand 2 and tripodal ligand 3. This behavior suggests that the fullerene moiety contributes to enhance the binding of C(60)-Tripod in N-(1-Zn)(3). The fluorescence of N-(1-Zn)(3) was almost completely quenched (approximately 97 %) by complexation with C(60)-Tripod, without any indication of the formation of charge-separated species or a triplet excited state of either porphyrin or fullerene in the transient absorption spectra. These observations are explained by the idea that the fullerene moiety of C(60)-Tripod is in direct contact with the porphyrin planes of N-(1-Zn)(3) through fullerene-porphyrin pi-pi interactions. Thus, C(60)-Tripod is accommodated in N-(1-Zn)(3) with a pi-pi interaction and two pyridyl coordinations. The cooperative interaction achieves a sufficiently high affinity for quantitative and specific introduction of one equivalent of tripodal guest into the antenna ring, even under dilute conditions ( approximately 10(-7) M) in polar solvents such as benzonitrile. Additionally, complete fluorescence quenching of N-(1-Zn)(3) when accommodating C(60)-Tripod demonstrates that all of the excitation energy collected by the nine porphyrins migrates rapidly over the macrocycle and then converges efficiently on the fullerene moiety by electron transfer.
Keywords:fullerenes  photochemistry  photosynthesis  porphyrinoids  self‐assembly
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号