首页 | 本学科首页   官方微博 | 高级检索  
     

基于AR模型与神经网络的核爆与闪电电磁脉冲信号识别
引用本文:李鹏, 宋立军, 韩超, 等. 基于AR模型与神经网络的核爆与闪电电磁脉冲信号识别[J]. 强激光与粒子束, 2010, 22(12).
作者姓名:李鹏  宋立军  韩超  郑毅  曹保锋  李小强  张雪芹  梁睿
作者单位:防化研究院,北京,102205;防化研究院,北京,102205;防化研究院,北京,102205;防化研究院,北京,102205;防化研究院,北京,102205;防化研究院,北京,102205;防化研究院,北京,102205;防化研究院,北京,102205
摘    要:对平稳随机信号功率谱估计的AR模型,分别利用自相关函数法和Burg算法求该模型系数,作为核爆炸和闪电电磁脉冲信号的特征值;采用BP神经网络作为分类器以及不同的隐含层数和隐含层节点数,对核爆和闪电电磁脉冲实测数据进行识别研究。结果表明:AR参数模型法对两类信号特征值提取是非常有效的,采用Burg算法来求AR模型参数,其特征值提取效果优于自相关函数法。

关 键 词:AR模型  核爆电磁脉冲  闪电电磁脉冲  BP神经网络  识别
收稿时间:1900-01-01;

Recognition of NEMP and LEMP signals based on auto-regression model and artificial neutral network
li peng, song lijun, han chao, et al. Recognition of NEMP and LEMP signals based on auto-regression model and artificial neutral network[J]. High Power Laser and Particle Beams, 2010, 22.
Authors:Li Peng  Song Lijun  Han Chao  Zheng Yi  Cao Baofeng  Li Xiaoqiang  Zhang Xueqin  Liang Rui
Affiliation:1. Research Institute of Chemical Defense,Beijing 102205,China
Abstract:Auto-regression (AR) model, one power spectrum estimation method of stationary random signals, and artifical neutral network were adopted to recognize nuclear and lightning electromagnetic pulses. Self-correlation function and Burg algorithms were used to acquire the AR model coefficients as eigenvalues, and BP artificial neural network was introduced as the classifier with different numbers of hidden layers and hidden layer nodes. The results show that AR model is effective in those signals, feature extraction, and the Burg algorithm is more effective than the self-correlation function algorithm.
Keywords:nuclear electromagnetic pulse  lightning electromagnetic pulse  BP artificial neural networks  recognition
本文献已被 万方数据 等数据库收录!
点击此处可从《强激光与粒子束》浏览原始摘要信息
点击此处可从《强激光与粒子束》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号