首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetic investigation of electronic energy transfer processes following the pulsed dye-laser generation of excited atomic barium, Ba[6s6p(P1)], in the presence of atomic strontium
Authors:D. Husain, J. Lei, F. Casta  o,M. N. S  nchez Rayo
Affiliation:

a Department of Chemistry, University of Cambridge, Lensfield Road Cambridge CB2 1EW UK

b Department of Chemistry, King's College London, Strand London WC2R 2LS UK

c Departamento de Quimica Fisica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao Spain

Abstract:The collisional behaviour of Ba[6s5d(3DJ)], 1.151 eV above the 6s2(1S0) electronic ground state, in the presence of atomic strontium, has been investigated in the ‘long-time domain' (ca. 100 μs–1 ms) following the pulsed dye-laser excitation of barium vapour at elevated temperature at λ = 553.5 nm (Ba[6s6p(1P1)] ← Ba[6s2(1S0)]. Ba(3DJ) is subsequently produced from the short-lived 1P1 state (τe = 8.37 ± 0.38 ns) by a number of radiative and collisional processes. It may then be monitored in the ‘long-time domain' by atomic spectroscopic marker methods involving either collisional activation of Ba(3DJ) by Ba(1S0) and He buffer gas to yield Ba[6s6p(3PJ)] with subsequent emission from the 3P1 state (τe = 1.2 ± 0.1 μs): Ba[6s6p(3P1)] → Ba[6s2(1S0)] + hv (λ = 791.1 nm). Alternatively, emission from Ba(1P1) may be monitored at long times following the generation of this short-lived state by energy pooling following self-annihilation of Ba(3DJ) + Ba(3DJ) from Ba[6s6p(1P1)] → Ba[6s2(1S0)] + hv (λ = 553.5 nm). The generation of Ba(3DJ) in the presence of atomic strontium yields emission in the long-time domain from Sr[5s5p(3P1)] (τe = 19.6 μs): Sr[5s5p(3P1)] → Sr[5s2(1S0)]  + hv (λ = 689.3 nm). Whilst the decay profiles at short times are complex in form, at long times all these atomic profiles show first-order kinetic removal with the decay coefficients for λ = 791.1 nm, 689.3 nm and 553.5 nm emissions in the ratio 1 : 2 : 2, consistent with overall third-order activation of the form: Ba(3DJ) + Ba(3DJ) + Sr(1S0) → Sr(3PJ) + 2Ba(1S0). The mechanism is modelled in detail, including measurement of integrated emission intensities, yielding kinetic data for fundamental collisional processes. The overall rate constant for the third-order collisional activation of Sr[5s5p(3PJ])from 2Ba[6s5d(3DJ)] + Sr[5s2(1S0)] takes the upper limit of 5.8 × 10−27 cm6 atom−2 s−1 (T = 900 K). The rate constant for the two body collisional quenching of Ba[6s5d(3DJ)] by ground state atomic strontium, Sr[5s2(1S0)], is found to be (2.0 ± 0.1) × 10−12 cm3 atom−1 s−1 (T = 900 K).
Keywords:Excited barium atoms   Ba(3D)   Laser excitation   Energy transfer to strontium atoms   Sr(1S0)   Sr(3P) Collisional excitation   Rate processes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号