首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular insight into the T798M gatekeeper mutation-caused acquired resistance to tyrosine kinase inhibitors in ErbB2-positive breast cancer
Affiliation:1. Department of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen D-37075, Germany;2. Department of Gastroenterology and Endocrinology, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen D-37075, Germany;3. Institute of Pathology, University Medical Center Erlangen, Krankenhausstraße 8-10, Erlangen D-91054, Germany;4. Department of General and Visceral Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen D-37075, Germany
Abstract:Human epidermal growth factor receptor 2 (ErbB2) is an attractive therapeutic target for metastatic breast cancer. The kinase has been clinically observed to harbor a gatekeeper mutation T798M in its active site, which causes acquired resistance to the first-line targeted breast cancer therapy with small-molecule tyrosine kinase inhibitors. Previously, several theories have been proposed to explain the molecular mechanism of gatekeeper mutation-caused drug resistance, such as blocking of inhibitor binding and increasing of ATP affinity. In the current study, the direct binding of three wild type-selective inhibitors (Lapatinib, AEE788 and TAK-285) and two wild type-sparing inhibitors (Staurosporine and Bosutinib) to the wild-type ErbB2 and its T798M mutant are investigated in detail by using rigorous computational analysis and binding affinity assay. Substitution of the polar threonine with a bulky methionine at residue 798 can impair and improve the direct binding affinity of wild type-selective and wild type-sparing inhibitors, respectively. Hindrance effect is responsible for the affinity decrease of wild type-selective inhibitors, while additional nonbonded interactions contribute to the affinity increase of wild type-sparing inhibitors, thus conferring selectivity to the inhibitors for mutant over wild type. The binding affinity of Staurosporine and Bosutinib to ErbB2 kinase domain is improved by 11.9-fold and 2.1-fold upon T798M mutation, respectively. Structural analysis reveals that a nonbonded network of S–π contact interactions (for Staurosporine) or an S-involving halogen bond (for Bosutinib) forms with the sulfide group of mutant Met798 residue.
Keywords:Epidermal growth factor receptor 2  Gatekeeper mutation  Tyrosine kinase inhibitor  Acquired resistance  Breast cancer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号