首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal stability and degradation behavior of novel wholly aromatic azopolyamide-hydrazides
Authors:Refah Farhan Al-Ghamdi  Nadia Ahmed Mohamed
Institution:a Department of Chemistry, Faculty of Science, Girls College, Dammam 838, Saudi Arabia
b Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
Abstract:Thermal stability and degradation behavior of a series of novel wholly aromatic polyamide-hydrazides containing azo groups in their main chains have been investigated in nitrogen and in air atmospheres using differential scanning calorimetry (DSC), thermogravimetry (TG), infrared spectroscopy (IR) and elemental analysis. The influences of controlled structural variations and molecular weight on the thermal stability and degradation behavior of this series of polymers have also been studied. The structural differences were achieved by varying the content of para- and meta-substituted phenylene rings incorporated within this series. Azopolyamide-hydrazides having different molecular weights of all para-substituted phenylene type units were also examined. The polymers were prepared by a low temperature solution polycondensation reaction of p-aminosalicylic acid hydrazide PASH] and an equimolar amount of 4,4′-azodibenzoyl chloride 4,4′ADBC] or 3,3′-azodibenzoyl chloride 3,3′ADBC] or mixtures of various molar ratios of 4,4′ADBC and 3,3′ADBC in anhydrous N,N-dimethyl acetamide DMAc] containing lithium chloride as a solvent at −10 °C. All the polymers have the same structural formula except the mode of linking phenylene units in the polymer chain. The results clearly reveal that these polymers are characterized by high thermal stability. Their weight loss occurred in three distinctive steps. The first was small and assigned to the evaporation of absorbed moisture. The second was appreciable and was attributed to the cyclodehydration reaction of the hydrazide groups into 1,3,4-oxadiazole rings by losing water, combined with elimination of azo groups by losing molecular nitrogen. This is not a true degradation but rather a thermo-chemical transformation reaction of the azopolyamide-hydrazides into the corresponding polyamide-1,3,4-oxadiazoles. The third was relatively severe and sharp, particularly in air, and corresponded to the decomposition of the resulting polyamide-1,3,4-oxadizoles. In both degradation atmospheres, the improved resistance to high temperatures was always associated with increased content of para-phenylene moieties of the investigated polymer. The better thermal stability of the wholly para-oriented type of polymer relative to the other polymers is attributed to its greater chain symmetry which is responsible for its greater close packing, rod-like structure and consequently stronger intermolecular bonds which would be more difficult to break and therefore more resistance to high temperatures. Further, with exception of 160-200 °C temperature range, where the lower molecular weight samples showed considerable weight losses which were most probably due to hydrogen bonded DMAc, all the wholly para-oriented phenylene type of polymer samples behaved similarly regardless of their respective molecular weight. This seems to indicate that the structural building units responsible for high thermal stability of the polymers are their characteristic groups, such as aromatic moieties, amide and hydrazide linkages in case of azopolyamide-hydrazides, and 1,3,4-oxadiazole rings, aromatic nuclei and amide linking bonds in case of polyamide-1,3,4-oxadiazoles, rather than the longer chain segments.
Keywords:Azopolyamide-hydrazides  Thermal and thermo-oxidative stability  Differential scanning calorimetry  Thermogravimetric analysis  Polyamide-1  3  4-oxadiazoles
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号