首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Identifying Multidimensional Damage in a Hierarchical Dynamical System
Authors:Chelidze  David
Institution:(1) Department of Mechanical Engineering and Applied Mechanics, University of Rhode Island, Kingston, RI 02881, USA
Abstract:In this paper, we present a novel method for multidimensional damage identification based on a dynamical systems approach to damage evolution. This approach does not depend on the knowledge of particular damage physics, and is appropriate for systems where damage evolves on much slower time scale than the directly observable dynamics. In an experimental context, the phase space reconstruction and locally linear models are used to quantify small distortions occurring in a dynamical system's phase space due to damage accumulation. These measurements are then related to the drifts in damage variables. A mathematical model of a harmonically driven cantilever beam in a force field of two battery-powered electromagnets is used to demonstrate validity of the method. It is explicitly demonstrated that an affine projection of the described feature vector accurately tracks the two competing damage processes. For practical damage identification purposes, the tracking data is analyzed using the proper orthogonal decomposition (POD) and smooth orthogonal decomposition (SOD) methods. Both methods correctly identify the two dominant damage modes. However, the SOD is more impervious to changes in fast-time dynamics and provides a significantly better signal-to-noise ratio. The damage modes identified using SOD are demonstrated to be within a linear transformation from the actual damage states and can be used to reconstruct the corresponding phase space trajectory.
Keywords:condition monitoring  diagnostics  dynamical systems  health monitoring  multidimensional damage identification  phase space reconstruction
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号