首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Backbone and side-chain specific dissociations of <Emphasis Type="Italic">z</Emphasis> ions from non-tryptic peptides
Authors:Thomas W Chung  František Tureček
Institution:1.Department of Chemistry,University of Washington,Seattle,USA
Abstract:Backbone z-type fragment ions formed by electron-transfer dissociation (ETD) of doubly protonated peptides AAHAL, AHDAL, and AHADL were subjected to collisional activation and their dissociation products were studied by ETD-CID-MS3 and MS4. Electron structure theory calculations were performed to elucidate ion structures and reaction mechanisms. All z ions showed competitive eliminations of C3H7 and C4H8 from the C-terminal Leu side chain. The energetics and kinetics of these dissociations were studied computationally for the z4 ion from AAHAL, and optimized structures are reported for several intermediates and transition states. RRKM calculations on the combined B3LYP and PMP2/6-311++G(2d,p) potential energy surface provided unimolecular rate constants that closely reproduced the experimental branching ratios for C3H7 and C4H8 eliminations. Mechanisms were also studied for the loss of CO2 from z ions generated by ETD of AHDAL and AHADL and for a specific radical-induced Asp-Cα-CO backbone cleavage. CID of the z ions under study did not produce any fragment ions that would indicate cascade backbone dissociations triggered by the radical sites. In contrast, the majority of backbone dissociations occurred at bonds that were remote from the radical sites (spin-remote dissociations) and were triggered by proton migrations that were analogous to those considered for standard peptide ion fragmentations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号