首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulations of solvation free energies and solubilities in supercritical solvents
Authors:Su Zemin  Maroncelli Mark
Institution:Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, USA.
Abstract:Computer simulations are used to study solvation free energies and solubilities in supercritical solvents. Solvation free energies are calculated using the particle insertion method. The equilibrium solvent configurations required for these calculations are based on molecular dynamics simulations employing model solvent potentials previously tuned to reproduce liquid-vapor coexistence properties of the fluids Xe, C(2)H(6), CO(2), and CHF(3). Solutes are represented by all-atom potentials based on ab initio calculations and the OPLS-AA parameter set. Without any tuning of the intermolecular potentials, such calculations are found to reproduce the solvation free energies of a variety of typical solid solutes with an average accuracy of +/-2 kJmol. Further calculations on simple model solutes are also used to explore general aspects of solvation free energies in supercritical solvents. Comparisons of solutes in Lennard-Jones and hard-sphere representations of Xe show that solvation free energies and thus solubilities are not significantly influenced by solvent density fluctuations near the critical point. The solvation enthalpy and entropy do couple to these fluctuations and diverge similarly to solute partial molar volumes. Solvation free energies are also found to be little affected by the local density augmentation characteristic of the compressible regime. In contrast to solute-solvent interaction energies, which often provide a direct measure of local solvent densities, solvation free energies are remarkably insensitive to the presence of local density augmentation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号