Relativistic configuration interaction study of the electronic spectrum of SnTe and SnTe+ |
| |
Authors: | Giri Dipankar Pati Kashinath Das Kalyan Kumar |
| |
Affiliation: | Department of Chemistry, Physical Chemistry Section, Jadavpur University, Kolkata 700 032, India. |
| |
Abstract: | Ab initio based relativistic configuration interaction calculations have been performed to study the electronic spectrum of the heaviest tin chalcogenide and its monopositive ion. Potential energy curves and spectroscopic constants of low-lying states of both species within 7 eV are reported. The ground-state dissociation energies of SnTe and SnTe+ are computed to be 3.48 and 2.50 eV, respectively. The spin-orbit splitting between the two components of the X 2Pi state of SnTe+ is about 3030 cm(-1). Effects of the strong spin-orbit coupling on the potential curves and spectroscopic properties of both the species are investigated in detail. The electric dipole moments of some of the low-lying states of SnTe and SnTe+ are reported. Transition moments of some important spin-allowed and spin-forbidden transitions are calculated from the configuration interaction wave functions. The radiative lifetime of the excited E 1sigma0+(+) state of SnTe is about 39 ns. The X2-X1 transition in SnTe+ is found to be more probable than the similar transition in the lighter ions. The vertical ionization energy of SnTe in the ground state is estimated to be 8.22 eV. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|