首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A hydrogen atom in a superstrong magnetic field and the Zeldovich effect
Authors:B M Karnakov  V S Popov
Institution:(1) Moscow Institute of Engineering Physics, Kashirskoe sh. 31, Moscow, 115409, Russia;(2) Institute for Theoretical and Experimental Physics, ul. Bol’shaya Cheremushkinskaya 25, Moscow, 117218, Russia
Abstract:We consider the problem of a hydrogen atom in a superstrong magnetic field, B? B a =2.35×109 G. The analytical formulas that describe the energy spectrum of this atom are derived for states with various quantum numbers nρ and m. A comparison with available calculations shows their high accuracy for B?B a . We note that the derived formulas point to a manifestation of the Zeldovich effect, i.e., a rearrangement of the atomic spectrum under the influence of strong short-range Coulomb potential distortion. We discuss the relativistic corrections to level energies, which increase in importance with magnetic field and become significant for B?1014 G. We suggest the parameters in terms of which the Zeldovich effect has the simplest form. Analysis of our precision numerical calculations of the energy spectrum for a hydrogen atom in a constant magnetic field indicates that the Zeldovich effect is observed in the spectrum of atomic levels for superstrong fields, B?5×1011 G. Magnetic fields of such strength exist in neutron stars and, possibly, in magnetic white dwarfs. We set lower limits for the fields Bmin required for the manifestation of this effect. We discuss some of the properties of atomic states in a superstrong magnetic field, including their mean radii and quadrupole moments. We calculated the probabilities of electric dipole transitions between odd atomic levels and a deep ground level.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号