首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unimolecular dissociations of C70+ and its noble gas endohedral cations Ne@C70+ and Ar@C70+: cage-binding energies for C2 loss
Authors:Cao Baopeng  Peres Tikva  Cross R James  Saunders Martin  Lifshitz Chava
Institution:Department of Physical Chemistry and The Farkas Center for Light Induced Process, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. bcao@tara.tsukuba.ac.jp
Abstract:The energetics and dynamics of unimolecular decompositions of C70+ and its noble gas endohedral cations, Ne@C70+ and Ar@C70+, have been studied using tandem mass spectrometry techniques. The high-resolution mass-analyzed ion kinetic energy (HR-MIKE) spectra for the unimolecular reactions of C70+, Ne@CC70+, and Ar@C70+ were recorded by scanning the electrostatic analyzer and using single-ion counting that was achieved by combination of an electron multiplier, amplifier/discriminator, and multichannel analyzer. These cations dissociate unimolecularly via loss of a C2 unit, and no endohedral atom is observed as fragment. The activation energies for C2 evaporation from Ne@C70+ and Ar@C70+ are lower than those for elimination of the endohedral noble gas atoms. The kinetic energy release distributions (KERDs) for the C2 evaporation have been measured and, by use of the finite heat bath theory (FHBT), the binding energies for the C2 emission have been deduced from the KERDs. The C2 evaporation energies increase in the order DeltaEvap(C70+) < DeltaEvap(Ne@C70+) < DeltaEvap(Ar@C70+), but no big difference in the cage binding was observed for C70+, Ne@C70+, and Ar@C70+, indicating incorporations of the Ne and Ar atoms into C70 contribute a little to the stability of C70 toward C2 loss, which is in good agreement with theoretical calculations but contrasts with the findings in their C60 analogues and in metallofullerenes that the decay energies of the filled fullerenes are much higher than those of the corresponding empty cages.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号