首页 | 本学科首页   官方微博 | 高级检索  
     


A four kinetic state model of fast axonal transport: Model formulation and perturbation solution
Authors:Andrey V. Kuznetsov
Affiliation:(1) Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910, USA
Abstract:This paper formulates a four kinetic state model for fast axonal transport. The paper further develops the Smith-Simmons model that is based on equations governing intracellular molecular-motor-assisted transport; these equations are extended by considering four rather than three kinetic states for organelles. The model considers plus-end and minus-end-oriented organelles that can be either free (suspended in the cytosol) or attached to microtubules (MTs) (in the latter case organelles are transported by molecular motors). The paper then develops a method for uncoupling differential equations of the proposed model. A perturbation solution of this problem is obtained. The effect of transition between plus-end-oriented and minus-end oriented organelles is discussed. The accuracy of the obtained perturbation solution is evaluated by comparing the zero-order and the first-order results with a high-accuracy numerical solution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号