首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study on the Electrospinnability of Polyvinyl Alcohol Solutions by Using Water/N,N-dimethylacetamide or Water/N,N-dimethylformamide as Solvents
Authors:Fangbing Li  Xuefei Chang  Zhenliang Xu
Institution:1. Membrane Science and Engineering R&2. D Lab and Chemical Engineering Research Center, East China University of Science and Technology, Shanghai, China
Abstract:The electrospinning of poly(vinyl alcohol) (PVA) (99% hydrolysis degree) aqueous solution with added organic solvents N, N-dimethylacetamide (DMAc) or N, N-Dimethylformamide (DMF) was investigated. After the addition of the organic solvents to the PVA aqueous solutions, the surface tension and conductivity decreased and the viscosity significantly increased, which caused an improved electrospinnability of the PVA solutions. The micro-structures of the three solutions were investigated by dynamic light scattering (DLS), differential scanning calorimetry (DSC) and dynamic viscoelastic measurements. The DLS data revealed that the swelling of the PVA coils was slightly increased but the overlaps of PVA coils decreased greatly after one of the organic solvents was added to the aqueous solution. The DSC data showed both the water-rich phase and PVA-rich phase were destroyed and the solution became more homogenous after the addition due to the interaction between the organic solvent and water. Viscoelastic data showed there was an obvious difference in the storage modulus behavior between the aqueous solutions and the water/solvents solutions. These changes in the micro-structure and properties were the reason for the improved electrospinnability of the PVA solution. According to scanning electron microscopy (SEM), the average diameter of the electrospun PVA nanofibers was about 308 nm for the DMF/water system, and 255 nm for the DMAC/water system, as compared with uneven diameter nanofibers for the water system.
Keywords:electrospinning  micro-structure  nanofibers  poly(vinyl alcohol)  water/organic solvent
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号