首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scalar transport in plane mixing layers
Authors:J Vanormelingen  E Van den Bulck
Institution:(1) Department of Mechanical Engineering Division of Applied Mechanics and Energy Conversion Celestijnenlaan 300A, B-3001 Heverlee-Leuven, Belgium, BE
Abstract:This paper describes the application of the Eulerian, single-point, single-time joint-scalar probability density function (PDF) equation for predicting the scalar transport in mixing layer with a high-speed and a low-speed stream. A finite-volume procedure is applied to obtain the velocity field with the k-ε closure being used to describe turbulent transport. The scalar field is represented through the modelled evolution equation for the scalar PDF and is solved using a Monte Carlo simulation. The PDF equation employs gradient transport modelling to represent the turbulent diffusion, and the molecular mixing term is modelled by the LMSE closure. There is no source term for chemical reaction as only an inert mixing layer is considered here. The experimental shear layer data published by Batt is used to validate the computational results despite the fact that comparisons between experiments and computational results are difficult because of the high sensitivity of the shear layer to initial conditions and free stream turbulence phenomena. However, the bimodal shape of the RMS scalar fluctuation as was measured by Batt can be reproduced with this model, whereas standard gradient diffusion calculations do not predict the dip in this profile. In this work for the first time an explanation is given for this phenomenon and the importance of a micromixing model is stressed. Also it is shown that the prediction of the PDF shape by the LMSE model is very satisfactory. Received on 27 October 1998
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号