首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of benzene guest inside a self-assembled cylindrical capsule: a combined solid-state 2H NMR and molecular dynamics simulation study
Authors:Albunia Alexandra R  Gaeta Carmine  Neri Placido  Grassi Alfonso  Milano Giuseppe
Institution:Dipartimento di Chimica, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano, Salerno, Italy.
Abstract:The reorientational dynamics of benzene-d(6) molecules hosted into the cavity of a cavitand-based, self-assembled capsule was investigated by Molecular Dynamics (MD) simulations and temperature-dependent solid-state (2)H NMR spectroscopy. MD simulations were preliminarily performed to assess the motional models of the guest molecules inside the capsules. An in-plane fast reorientation of the benzene guest around the C(6) symmetry axis (B1 motion), characterized by correlation times of the order of picoseconds, was predicted with an activation barrier ( approximately 8 kJ/mol) very similar to that found for neat benzene in the liquid state. An out-of-plane reorientation corresponding to a nutation of the C(6) symmetry axis in a cone angle of 39 degrees (B2 motion, 373 K) with an activation barrier ( approximately 39 kJ/mol) definitely larger than that of liquid benzene was also anticipated. In the temperature range 293-373 K correlation times of the order of a nanosecond have been calculated and a transition from fast to slow regime in the (2)H NMR scale has been predicted between 293 and 173 K. (2)H NMR spectroscopic analysis, carried out in the temperature range 173-373 K on the solid capsules containing the perdeuterated guest (two benzene molecules/capsule), confirmed the occurrence of the B1 and B2 motions found in slow exchange in the (2)H NMR time scale. Line shape simulation of the (2)H NMR spectral lines permitted defining a cone angle value of 39 degrees at 373 K and 35 degrees at 173 K for the nutation axis. The T(1) values measured for the (2)H nuclei of the encapsulated aromatic guest gave correlation times and energetic barrier for the in-plane motion B1 in fine agreement with theoretical calculation. The experimental correlation time for B2 as well as the corresponding energetic barrier are in the same range found for B1. A molecular mechanism for the encapsulated guest accounting for the B1 and B2 motions was also provided.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号