首页 | 本学科首页   官方微博 | 高级检索  
     


Sorption and diffusion of phenols onto well-defined ordered nanoporous monolithic silicas
Authors:El-Safty S A
Affiliation:Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt. Sherif.El-Safty@aist.go.jp
Abstract:The sorption of phenol, and o-, m-, and p-aminophenol (o-, m-, and p-AP) onto highly ordered mesoporous silicas (HOM) with cubic Im3m (HOM-1), hexagonal H(I) (HOM-2), 3-D hexagonal p6(3)/mmc (HOM-3), cubic Ia3d (HOM-5), lamellar L( infinity ) (HOM-6), and solid phase S (HOM-8) materials has been investigated kinetically. Nanostructured silica molecular sieves have been prepared at 25 and 60 degrees C with lyotropic liquid-crystalline phases of the nonionic surfactant (Brij 76) that was used as a structure-directing agent. Such nanostructured silicas have been studied by 29Si nuclear magnetic resonance (29Si NMR), powder X-ray diffraction (XRD), the Brunauer-Emmett-Teller (BET) method for nitrogen adsorption and surface area measurements, and transmission electron microscopy (TEM) techniques after synthesis and sorption. It was found that all materials exhibit well-defined long-range porous architectures without significant loss of the ordered texture during phenol sorption. The kinetics of phenol sorption has been studied spectrophotometrically at different temperatures (25-40 degrees C; +/-0.1 range). The sorption rate is zero order in all phenols sorbed, and increases directly in the pattern P >m-AP > o-AP > p-AP, which reflects the mobility of the phenol compounds on the particle pores. The isothermal sorption and the kinetic parameters were discussed and it was established that a diffusion-controlled process characterizes phenol sorption. Furthermore, the mechanism of phenol sorption was deduced to be predominantly particle diffusion. The diffusion coefficients were determined using Fick's equation. The trend of diffusion of all phenols onto nanoporous silica was HOM-8 > HOM-2 > HOM-6 > HOM-5 > HOM-1 > HOM-3, reflecting the effect of the uniform pore size distribution and the internal surface area of the nanostructured silicas on the diffusion process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号