首页 | 本学科首页   官方微博 | 高级检索  
     


Y2O3 Nanoparticles and X-ray Radiation-Induced Effects in Melanoma Cells
Authors:Ioana Porosnicu  Cristian M. Butnaru  Ion Tiseanu  Elena Stancu  Cristian V. A. Munteanu  Bogdan I. Bita  Octavian G. Duliu  Felix Sima
Affiliation:1.National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.);2.Faculty of Physics, Doctoral School on Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele-Ilfov, Romania;3.Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania;
Abstract:The innovative strategy of using nanoparticles in radiotherapy has become an exciting topic due to the possibility of simultaneously improving local efficiency of radiation in tumors and real-time monitoring of the delivered doses. Yttrium oxide (Y2O3) nanoparticles (NPs) are used in material science to prepare phosphors for various applications including X-ray induced photodynamic therapy and in situ nano-dosimetry, but few available reports only addressed the effect induced in cells by combined exposure to different doses of superficial X-ray radiation and nanoparticles. Herein, we analyzed changes induced in melanoma cells by exposure to different doses of X-ray radiation and various concentrations of Y2O3 NPs. By evaluation of cell mitochondrial activity and production of intracellular reactive oxygen species (ROS), we estimated that 2, 4, and 6 Gy X-ray radiation doses are visibly altering the cells by inducing ROS production with increasing the dose while at 6 Gy the mitochondrial activity is also affected. Separately, high-concentrated solutions of 25, 50, and 100 µg/mL Y2O3 NPs were also found to affect the cells by inducing ROS production with the increase of concentration. Additionally, the colony-forming units assay evidenced a rather synergic effect of NPs and radiation. By adding the NPs to cells before irradiation, a decrease of the number of proliferating cell colonies was observed with increase of X-ray dose. DNA damage was evidenced by quantifying the γ-H2AX foci for cells treated with Y2O3 NPs and exposed to superficial X-ray radiation. Proteomic profile confirmed that a combined effect of 50 µg/mL Y2O3 NPs and 6 Gy X-ray dose induced mitochondria alterations and DNA changes in melanoma cells.
Keywords:Y2O3 nanoparticles   A375 cell   X-ray irradiation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号