首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Combined effect of chemically compound graphene oxide‐calcium pimelate on crystallization behavior,morphology and mechanical properties of isotactic polypropylene
Authors:Yue‐Fei Zhang  Xiang‐Feng Lin  Hui Hu
Abstract:The combined nucleation effect of graphene oxide (GO) and calcium pimelate (CaPi) which are chemically compound together (expressed in GO ? CaPi) in isotactic polypropylene (iPP) was investigated. Fourier transform infrared (FTIR), X‐ray diffraction (XRD) and thermogravimetric analysis (TGA) verified that CaPi was chemically compound with GO by chelate bonds. The crystallization behavior and crystalline morphologies of iPP nucleated with different mass ratio of GO and CaPi were investigated. The crystallization peak temperature of iPP nucleated with 0.2 wt% GO ? CaPi with the mass ratio of 1:5 (GO1 ? C5) was increased by 8.3°C when compared with that of pure iPP, and the relative content of β‐crystal reached up to 0.7962. Whereas, the crystallization peak temperature of iPP nucleated with 0.2 wt% GO and CaPi which are blended together by mechanical force (expressed in GO + CaPi) with the mass ratio of 1:5 (GO1 + C5) was only increased by 5.0°C. It was attributed to that the aggregation of GO + CaPi caused the decrease of the crystallization peak temperature, while the GO1 ? C5 uniformly dispersed in the iPP matrix. Unexpectedly, the relative content of β‐crystal of iPP nucleated with 0.02 wt% GO1 ? C5 reached up to 0.8094, and the crystallization peak temperature was increased by 6.7°C compared with that of pure iPP. Meanwhile, the impact strength, tensile strength and heat deflection temperature of iPP nucleated with 0.02 wt% GO1 ? C5 increased by almost 45.86%, 2.03% and 7.7°C, respectively. The iPP nucleated with GO1 ? C5 obtained a balance between stiffness and toughness and the thermo‐mechanical property of nucleated iPP was improved.
Keywords:calcium pimelate  graphene oxide  isotactic polypropylene  mechanical properties  nucleation effect
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号