首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The electrospun poly(ε‐caprolactone)/fluoridated hydroxyapatite nanocomposite for bone tissue engineering
Authors:Narges Johari  Mohammadhossein Fathi  Zeinab Fereshteh  Saeid Kargozar  Ali Samadikuchaksaraei
Abstract:Biodegradable cell‐incorporated scaffolds can guide the regeneration process of bone defects such as physiological resorption, tooth loss, and trauma which medically, socially, and economically hurt patients. Here, 0, 5, 10, and 15 wt% fluoridated hydroxyapatite (FHA) nanoparticles containing 25 wt% F? and 75 wt% OH? were incorporated into poly(ε‐caprolactone) (PCL) matrix to produce PCL/FHA nanocomposite scaffolds using electrospinning method. Then, scanning electron microscopy (SEM), X‐ray diffraction (XRD) pattern, and Fourier transform infrared spectroscopy (FTIR) were used to evaluate the morphology, phase structure, and functional groups of prepared electrospun scaffolds, respectively. Furthermore, the tensile strength and elastic modulus of electrospun scaffolds were investigated using the tensile test. Moreover, the biodegradation behavior of electrospun PCL/FHA scaffolds was studied by the evaluation of weight loss of mats and the alternation of pH in phosphate buffer saline (PBS) up to 30 days of incubation. Then, the biocompatibility of prepared mats was investigated by culturing MG‐63 osteoblast cell line and performing MTT assay. In addition, the adhesion of osteoblast cells on prepared electrospun scaffolds was studied using their SEM images. Results revealed that the fiber diameter of prepared electrospun PCL/FHA scaffolds alters between 700 and 900 nm. The mechanical assay illustrated the mat with 10 wt% FHA nanoparticles revealed the highest tensile strength and elastic modulus. The weight loss alternation of mats determined around 1% to 8% after 30 days of incubation. The biocompatibility and cell adhesion of mats improved by increasing the amounts of FHA nanoparticles.
Keywords:biocompatibility  electrospinning  nano‐fluoridated hydroxyapatite  poly(ɛ  ‐caprolactone)  tensile strength
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号