首页 | 本学科首页   官方微博 | 高级检索  
     


Novel ultrasonic-modified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of NO with ammonia
Authors:Zhang Yaping  Zhao Xiaoyuan  Xu Haitao  Shen Kai  Zhou Changcheng  Jin Baosheng  Sun Keqin
Affiliation:School of Energy and Environment, Southeast University, Nanjing, PR China.
Abstract:A novel ultrasonic-modified MnO(x)/TiO(2) catalyst was prepared and compared with two different kinds of MnO(x)/TiO(2) catalysts in the process of low-temperature selective catalytic reduction of NO with NH(3). The physicochemical properties of the catalysts were studied by using various characterization techniques, such as Brunauer-Emmett-Teller (BET) surface measurement, X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), and in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ultrasonic-modified process introduced ultrasound in the solution impregnation step of traditional impregnation method for MnO(x)/TiO(2) catalyst preparation. In this study, ultrasonic process significantly improved the dispersion behavior and surface acid property of manganese oxide on TiO(2) as well as the catalytic activity, especially at temperature below 120°C. The NO conversion could reach 90% at 100°C. For the novel ultrasonic-modified catalyst, the combination analysis of XRD and HRTEM confirmed that manganese oxide was in a highly dispersed state and Ti and Mn had strong interaction. Furthermore, in situ FT-IR studies revealed that there were significant amounts of Lewis acidity and high Mn atom concentration on the surface of the novel catalysts.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号