首页 | 本学科首页   官方微博 | 高级检索  
     


Reversibly switchable DNA nanocompartment on surfaces: experiments, applications, and theory
Authors:You-dong Mao   Chun-xiong Luo  Qi Ou-Yang
Affiliation:(1) School of Physics, Key Laboratory for Mesoscopic Physics, and Center for Theoretical Biology, Peking University, Beijing, 100871, China
Abstract:This paper summarizes our studies of DNA nano-compartement in recent years. Biological macromolecules have been used to fabricate many nanostructures, bio-devices, and biomimetics because of their physical and chemical properties. But dynamic nanostructure and bio-machinery that depend on collective behavior of biomolecules have not been demonstrated. Here, we report the design of DNA nanocompartment on surfaces that exhibit reversible changes in molecular mechanical properties. Such molecular nanocompartment is served to encage molecules, switched by the collective effect of Watson-Crick base-pairing interactions. This effect is used to investigate the dynamic process of nanocompartment switching and molecular thermosensing, as well as perform molecular recognition. Further, we found that ‘fuel’ strands with single-base variation cannot afford an efficient closing of nanocompartment, which allows highly sensitive label-free DNA array detection. Theoretical analysis and computer simulations confirm our experimental observations, which are discussed in this review paper. Our results suggest that DNA nanocompartment can be used as building blocks for complex biomaterials, because its core functions are independent of substrates and mediators.
Keywords:DNA nanocompartment  DNA array  Molecular collective behavior  molecular channel
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号