首页 | 本学科首页   官方微博 | 高级检索  
     


Mutual Effect of Functional Groups and the Radical Center on the Reactivity of Nitroxyl Radicals
Authors:A. D. Malievskii  A. B. Shapiro
Affiliation:(1) Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, 119991, Russia
Abstract:This review considers the correlation between the reactivity of nitroxyl radicals (piperidine, pyrroline, pyrrolidine, imidazoline, dihydroquinoline, tetrahydroquinoline, diphenyl nitroxide, etc.) and their chemical structure in terms of the rate constants of reactions between these radicals and hydrazobenzene. 4,4′-Di(tert-butyl)diphenyl nitroxyl has the highest reactivity, and the nitroxyl radical of benzoindolopyrrolidine is the least reactive (the difference is a factor of ∼104). The effects of the metal atom in stable organometallic nitroxyl radicals and of the halogen atom in halogenated nitroxyl radicals on the reactivity of the nitroxyl center are considered. Data on the effect of the nitroxyl center on the reactivity of functional groups in the piperidine nitroxyl radical are generalized. Nitroxyl radicals with an activated double bond are shown by quantum chemical calculations to form cyclic transition complexes with amines, involving both the paramagnetic center and a double bond. This explains why the activated double bond in nitroxyl radicals is more reactive in nucleophilic additions of amines than the same bond in their diamagnetic analogues. The rate constants of nitroxyl reduction with hydrazobenzene and of nitroxyl oxidation with tetranitromethane are related to the σESR constant derived from isotropic hyperfine coupling constants HFC(aN), and their correlation with Hammett constants is demonstrated. The role of solvents in the reduction and oxidation of the nitroxyl radicals is considered. The influence of hydroxyl radical-polar solvent complexes and hydroxylamine-polar solvent H complexes on the course of reactions is considered for hydrogen atom transfer in systems of a sterically hindered nitroxyl radical and hydroxylamine.__________Translated from Kinetika i Kataliz, Vol. 46, No. 4, 2005, pp. 506–528.Original Russian Text Copyright © 2005 by Malievskii, Shapiro.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号