首页 | 本学科首页   官方微博 | 高级检索  
     检索      


UV absorption cross sections between 230 and 350 nm and pressure dependence of the photolysis quantum yield at 308 nm of CF3CH2CHO
Authors:Antiñolo María  Jiménez Elena  Albaladejo José
Institution:Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain.
Abstract:Ultraviolet (UV) absorption cross sections of CF(3)CH(2)CHO were determined between 230 and 350 nm by gas-phase UV spectroscopy. The forbidden n → π* transition was characterized as a function of temperature (269-323 K). In addition, the photochemical degradation of CF(3)CH(2)CHO was investigated at 308 nm. The possible photolysis channels are: CF(3)CH(2) + HCO , CF(3)CH(3) + CO , and CF(3)CH(2)CO + H . Photolysis quantum yields of CF(3)CH(2)CHO at 308 nm, Φ(λ=308nm), were measured as a function of pressure (25-760 Torr of synthetic air). The pressure dependence of Φ(λ=308nm) can be expressed as the following Stern-Volmer equation: 1/Φ(λ=308nm) = (4.65 ± 0.56) + (1.51 ± 0.04) × 10(-18) M] (M] in molecule cm(-3)). Using the absorption cross sections and the photolysis quantum yields reported here, the photolysis rate coefficient of this fluorinated aldehyde throughout the troposphere was estimated. This calculation shows that tropospheric photolysis of CF(3)CH(2)CHO is competitive with the removal initiated by OH radicals at low altitudes, but it can be the major degradation route at higher altitudes. Photodegradation products (CO, HC(O)OH, CF(3)CHO, CF(3)CH(2)OH, and F(2)CO) were identified and also quantified by Fourier transform infrared spectroscopy. CF(3)CH(2)C(O)OH was identified as an end-product as a result of the chemistry involving CF(3)CH(2)CO radicals formed in the OH + CF(3)CH(2)CHO reaction. In the presence of an OH-scavenger (cyclohexane), CF(3)CH(2)C(O)OH was not detected, indicating that channel (R1c) is negligible. Based on a proposed mechanism, our results provide strong evidences of the significant participation of the radical-forming channel (R1a).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号