首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adsorption of atomic oxygen on cubic PbTiO3 and LaMnO3 (001) surfaces: A density functional theory study
Authors:G Pilania  R Ramprasad
Institution:Chemical, Materials, and Biomolecular Engineering, Institute of Materials Science University of Connecticut, Storrs, CT 06269, United States
Abstract:We present and discuss density functional theory calculations addressing the electronic structure and energetics of isolated oxygen ad-atoms at the (001) surfaces of PbTiO3 (PTO) and LaMnO3 (LMO) cubic perovskites. Both AO- and BO2-type of surface terminations are considered for each perovskite. Difference electron density analysis has been carried out for each surface to probe local electronic charge redistribution upon oxygen adsorption. Our results show that the (001) surfaces of the two perovskites behave quite differently towards oxygen adsorption. In the case of the PTO (001) surfaces, the adsorbate oxygen atom was found to form a peroxide-type molecular species along with a surface lattice oxygen atom on both PbO- and TiO2-terminated surface facets. On the other hand, the most stable oxygen adsorption site for the LMO (001) surfaces corresponds to the one expected from a natural continuation of the perovskite lattice. Moreover, the dissociative adsorption of molecular oxygen varies from being only slightly exothermic on the PTO (001) facets to being highly exothermic on the LMO (001) facets. The AO-terminated facets, in general, showed a stronger binding to the adsorbed oxygen.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号