首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogen-bond interactions of nicotine and acetylcholine salts: a combined crystallographic, spectroscopic, thermodynamic and theoretical study
Authors:Arnaud Virginie  Berthelot Michel  Evain Michel  Graton Jérôme  Le Questel Jean-Yves
Institution:EA 1149, FR CNRS 2465, Université de Nantes, Nantes Atlantique Universités, Faculté des Sciences et des Techniques de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
Abstract:The hydrogen-bond (HB) interactions of the monocharged active forms of nicotine and acetylcholine (ACh) have been compared theoretically by using density functional theory (DFT) calculations and experimentally on the basis of crystallographic observations and the measurement of equilibrium constants in solution. The 2,4,6-trinitrophenolate (picrate) counterion was used to determine the experimental HB basicity of the cations despite its potential multisite HB acceptor properties. The preferred HB interaction site of the ammonium picrate salts was determined from a survey of crystallographic data found in the Cambridge Structural Database (CSD) and is supported by theoretical calculations. Two distinct classes of ammonium groups were characterised depending on the absence (quaternary ammonium) or presence (tertiary, secondary and primary ammoniums) of an N(+)HO hydrogen bond linking the two ions. The crystal structure of nicotinium picrate was determined and compared with that of ACh. This analysis revealed the peculiar behaviour of the ammonium moiety of nicotinic acetylcholine receptor (nAChR) ligands towards the picrate anion. Dedicated methods have been developed to separate the individual contributions of the anion and cation accepting sites to the overall HB basicity of the ion pairs measured in solution. The HB basicities of the picrate anions associated with the two different ammonium classes were determined in dichloromethane solution by using several model ion pairs with non-basic ammonium cations. The experimental and theoretical studies performed on the nicotine and ACh cations consistently show the significant HB ability of the acceptor site of nAChR agonists in their charged form. Both the greater HB basicity of the pyridinic nitrogen over the carbonyl oxygen and the greater HB acidity of the N(+)H unit relative to N(+)CH could contribute to the higher affinity for nAChRs of nicotine-like ligands relative to ACh-like ligands.
Keywords:density functional calculations  hydrogen bonds  IR spectroscopy  molecular recognition  nAChR agonists  X‐ray diffraction
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号