首页 | 本学科首页   官方微博 | 高级检索  
     检索      


DFT evidence for a stepwise mechanism in the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals
Authors:Bietti Massimo  Ercolani Gianfranco  Salamone Michela
Institution:Dipartimento di Scienze e Tecnologie Chimiche, Università Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy. bietti@uniroma2.it
Abstract:Hybrid DFT calculations of the potential energy surface (PES) relative to the O-neophyl rearrangement of a series of ring-substituted 1,1-diarylalkoxyl radicals have been carried out at the UB3LYP/6-31G(d) level of theory. On the basis of the computational data, the rearrangement can be described as a consecutive reaction of the type a <--/--> b --> c (see above graphic), and the steady-state approximation could be applied in all cases to the intermediate b. The first-order rearrangement rate constants kobs = k1k2/(k-1 + k2)] were thus obtained from the computed activation free-energies and were compared with the experimental rate constants measured previously in MeCN solution by laser flash photolysis. An excellent agreement is observed along the two series, which strongly supports the hypothesis that the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals proceeds through the formation of the reactive 1-oxaspiro 2,5]octadienyl radical intermediate. This is in contrast to previous hypotheses that involve either a long-lived intermediate or the absence of this intermediate along the reaction path. The calculated rearrangement free-energies decrease upon going from the methoxy-substituted radical (Delta G degrees = -16.4 kcal x mol-1) to the nitro-substituted one (Delta G degrees = -21.8 kcal x mol-1), which follows a trend that is similar to the one observed for the CAr-O bond dissociation enthalpies (BDEs) of ring-substituted anisoles. This evidence indicates that in the O-neophyl rearrangement the effect of ring substituents on the strength of the newly formed CAr-O bond plays an important role.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号