首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three‐dimensional sloshing: A consistent finite element approach
Authors:D Krishna Kishor  S Gopalakrishnan  Ranjan Ganguli
Institution:Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
Abstract:This paper presents a new computational methodology based on Legendre's polynomials to predict the slosh and acoustic motion in nearly incompressible fluids in both rigid and flexible structures with free surface. Here, we have used a finite element formulation based on Lagrangian frame of reference to model the fluid motion derived using Hamiltonian equation of the fluid system. We formulated three hexahedral finite elements based on strain fields expressed in terms of extended Legendre's polynomials. Sloshing and acoustic motion of liquid is investigated using these newly formulated elements and inf–sup test is performed on these new elements to check the performance of these elements in modeling sloshing under two severe constraints, namely incompressibility and irrotationality. Comparisons of slosh and acoustic frequencies, and mode shapes with exact solutions are given. Dynamic analysis with earthquake and harmonic kind of forcing function is carried out to validate the formulated hexahedral elements to analyze the sloshing response. Numerical results obtained with these new finite elements, and with the present finite element formulation of the mathematical model agree well with the exact solution and as well as with published experimental literature. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:fluid–  structure interaction  constrained media problems  Lagrangian fluid elements  volume change  sloshing and rotational modes  locking behaviour and field consistency
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号