首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Porphyrin Nanorods Modified Glassy Carbon Electrode for the Electrocatalysis of Dioxygen,Methanol and Hydrazine
Authors:Reama CGeorge  Tawanda Mugadza  Samson Khene  Gabriel O Egharevba  Tebello Nyokong
Institution:1. Department of Chemistry, Rhodes University, Grahamstown, South Africa;2. Department of Chemistry, Obafemi Awolowo University, Ile‐Ife, Nigeria
Abstract:Porphyrin nanorods (PNR) were prepared by ionic self‐assembly of two oppositely charged porphyrin molecules consisting of free base meso‐tetraphenylsulfonate porphyrin (H4TPPS42?) and meso‐tetra(N‐methyl‐4‐pyridyl) porphyrin (MTMePyP4+M=Sn, Mn, In, Co). These consist of H4TPPS42?? SnTMePyP4+, H4TPPS42?? CoTMePyP4+, H4TPPS42?? InTMePyP4+ and H4TPPS42?? MnTMePyP4+ porphyrin nanorods. The absorption spectra and transmission electron microscopic (TEM) images of these structures were obtained. These porphyrin nanostructures were used to modify a glassy carbon electrode for the electrocatalytic reduction of oxygen, and the oxidation of hydrazine and methanol at low pH. The cyclic voltammogram of PNR‐modified GCE in pH 2 buffer solution has five irreversible processes, two distinct reduction processes and three oxidation processes. The porphyrin nanorods modified GCE produce good responses especially towards oxygen reduction at ?0.50 V vs. Ag|AgCl (3 M KCl). The process of electrocatalytic oxidation of methanol using PNR‐modified GCE begins at 0.71 V vs. Ag|AgCl (3 M KCl). The electrochemical oxidation of hydrazine began at around 0.36 V on H4TPPS42?? SnTMePyP4+ modified GCE. The GCE modified with H4TPPS42?? CoTMePyP4+ H4TPPS42?? InTMePyP4+ and H4TPPS42?? MnTMePyP4+ porphyrin nanorods began oxidizing hydrazine at 0.54 V, 0.59 V and 0.56 V, respectively.
Keywords:Porphyrin nanorods  Methanol  Hydrazine  Dioxygen  Electrocatalysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号