首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multisensing Emissive Pyrimidine
Authors:Dr Renatus W Sinkeldam  Paul Marcus  Dmitriy Uchenik  Prof Dr Yitzhak Tor
Institution:Department of Chemistry and Biochemistry, University of California, San Diego (USA), La Jolla, California 92093, Fax: (+1)?858‐534‐0202
Abstract:Fluorescent nucleoside analogs, commonly used to explore nucleic acid dynamics, recognition and damage, frequently respond to a single environmental parameter. Herein we address the development of chromophores that can simultaneously probe more than one environmental factor while having each associated with a unique spectroscopic signature. We demonstrate that an isomorphic emissive pyridine‐modified 2‐deoxy‐uridine 1 , containing multiple sensory elements, responds to changes in acidity, viscosity, and polarity. Protonation of the pyridine moiety (pKa 4.4) leads to enhanced emission (λem=388 nm) and red‐shifted absorption spectra (λabs=319 nm), suggesting the formation of an intramolecular hydrogen bond with the neighboring pyrimidine carbonyl. This “locked” conformation can also be mimicked by increasing solvent viscosity, resulting in a stark enhancement of emission quantum yield. Finally, increasing solvent polarity substantially impacts the chromophore’s Stokes shift from 5.8×103 cm?1 at ET(30)=36.4 kcal mol?1 to 9.3 ×103 cm?1 at ET(30)=63.1 kcal mol?1]. The opposite effect is seen for the impact of solvent polarity of the protonated form. The characteristic photophysical signature induced by each parameter facilitates the exploration of these environmental factors both individually and simultaneously.
Keywords:acidity  fluorescent probes  nucleosides  polarity  viscosity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号