首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrochemical Oxidation of Carbon‐Containing Fuels and Their Dynamics in Low‐Temperature Fuel Cells
Authors:Prof Dr Ulrike Krewer  Dr Tanja Vidakovic‐Koch  Dr Liisa Rihko‐Struckmann
Institution:1. Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstra?e 1, 39106 Magdeburg (Germany), Fax: (+49)?391‐6110‐536;2. Portable Energy Systems, Chair for Process Systems Engineering, Otto‐von‐Guericke University Magdeburg, Universit?tsplatz 2, 39106 Magdeburg (Germany);3. Chair for Process Systems Engineering, Otto‐von‐Guericke University Magdeburg, Universit?tsplatz 2, 39106 Magdeburg (Germany)
Abstract:Fuel cells can convert the energy that is chemically stored in a compound into electrical energy with high efficiency. Hydrogen could be the first choice for chemical energy storage, but its utilization is limited due to storage and transport difficulties. Carbon‐containing fuels store chemical energy with significantly higher energy density, which makes them excellent energy carriers. The electro‐oxidation of carbon‐containing fuels without prior reforming is a more challenging and complex process than anodic hydrogen oxidation. The current understanding of the direct electro‐oxidation of carbon‐containing fuels in low‐temperature fuel cells is reviewed. Furthermore, this review covers various aspects of electro‐oxidation for carbon‐containing fuels in non‐steady‐state reaction conditions. Such dynamic investigations open possibilities to elucidate detailed reaction kinetics, to sense fuel concentration, or to diagnose the fuel‐cell state during operation. Motivated by the challenge to decrease the consumption of fossil fuel, the production routes of the fuels from renewable resources also are reviewed.
Keywords:dynamic operations  electro‐oxidation  fuel cells  kinetics  reaction mechanisms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号