Passively controlled supersonic cavity flow using a spanwise cylinder |
| |
Authors: | Jonathan G. Dudley Lawrence Ukeiley |
| |
Affiliation: | 1. CAE Associates, Middlebury, CT, 06762, USA 2. University of Florida MAE, Gainesville, Fl, 32611, USA
|
| |
Abstract: | An experimental investigation of a passively controlled open cavity with a length to depth ratio of six and freestream Mach number of 1.4 was conducted to investigate the mechanisms responsible for the observed surface pressure reductions. The passive control comes from placing a spanwise aligned cylinder in the boundary layer near the leading edge of the cavity. The two control configurations were isolated from previous experiments of the fluctuating surface pressure and correspond to a larger diameter rod near the top of the boundary layer and a smaller diameter rod placed near the wall. These were further analyzed using particle image velocimetry in an attempt to elicit the responsible mechanism for the flow control. The use of two-point statistics revealed the wall normal turbulent velocity correlation’s evolution became elongated in the wall normal direction. This suggests that the shear layer may be less-organized and consists of smaller-scale structures. The disturbance of the feedback receptivity loop is clearly demonstrated for the controlled configurations evidenced by weakened correlation signals between the aft wall sensor and positions on the cavity floor. The presence of the rod is shown to decrease the mean shear gradient, more effectively for the large rod placed at the top of the boundary layer, throughout the shear layer. The efficacy of the control leads to an initially thicker shear layer which spreads more rapidly and is clearly demonstrated by vorticity growth rates, mean, and turbulent flowfield statistics. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|