首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Catalytic metal-free intramolecular hydroaminations of non-activated aminoalkenes: a computational exploration
Authors:Li Haixia  Wen Mingwei  Lu Gang  Wang Zhi-Xiang
Institution:College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Science, Beijing 100049, PR China.
Abstract:Frustrated Lewis pairs (FLPs) has been applied to catalytic metal-free hydrogenation. Can the FLP reactivity be used for catalytic hydroamination? Using density functional theory (DFT) calculations, we have explored whether the molecules cat1-cat3, which were previously designed by integrating the dearomatization-aromatization effect and the FLP reactivity, can catalyze the intramolecular hydroaminations of non-activated aminoalkenes to afford nitrogen heterocycles. The study shows that the γ-aminoalkene (am1) hydroamination catalyzed by cat1 proceeds via two steps (aminoalkene N-H bond activation and C-N bond formation) with experimentally accessible energetics, giving the five-membered nitrogen heterocycle product 1,1-dimethylpyrrolidine. The N-H bond activation is reversible. The C-N bond formation step undergoes a concerted mechanism and complies with the Markovnikov addition rule. Possible side reactions which may cause catalyst deactivation were confirmed to be energetically unfavorable. The molecules cat2 and cat3 are less effective than cat1 in catalyzing the am1 hydroamination, but the barriers are not too high. By following the most favorable pathway of the cat1-mediated am1 hydroamination, we further extended the substrate (am1) to other aminoalkenes, including the methyl and phenyl β-substituted am1 (i.e. am2 and am3, respectively), the benzyl-protected primary aminoalkene (am4), and the δ-aminoalkene (am5). The hydroaminations of am2 and am3 have energetics comparable with am1 hydroamination, the am5 hydroamination is energetically less favorable, and the am4 hydroamination is least favorable but could be realizable by elevating the temperature and pressure. We call experimental efforts to synthesize cat1-cat3 or similar new molecules on the basis of the design strategy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号