首页 | 本学科首页   官方微博 | 高级检索  
     


DNA electrophoresis in confined, periodic geometries: a new lakes-straits model
Authors:Laachi Nabil  Dorfman Kevin D
Affiliation:Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA. laach003@umn.edu
Abstract:We present a method to study the dynamics of long DNA molecules inside a cubic array of confining spheres, connected through narrow openings. Our method is based on the coarse-grained, lakes-straits model of Zimm and is therefore much faster than Brownian dynamics simulations. In contrast to Zimm's approach, our method uses a standard stochastic kinetic simulation to account for the mass transfer through the narrow straits and the formation of new lakes. The different rates, or propensities, of the reactions are obtained using first-passage time statistics and a Monte Carlo sampling to compute the total free energy of the chain. The total free energy takes into account the self-avoiding nature of the chain as well as confinement effects from the impenetrable spheres. The mobilities of various chains agree with biased reptation theory at low and high fields. At moderate fields, confinement effects lead to a new regime of reptation where the mobility is a linear function of molecular weight and the dispersion is minimal.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号